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WITH A CYLINDRICAL CAVITY, PARTIALLY FILLED WITH A
VISCOUS LIQuID

B. 1. Rabinovich, G. G. Yefimenko and N. Ya. Dorozhkin

ABSTRACT. The dynamic characteristics of a solid cylindrical
body containing a cavity partially filled with a viscous
liquid (water and glycerine mixture) are analyzed through
boundary value problems. Equations are developed whose
amplitude-frequency curves are shown to be very similar to
experimental ones, so that they constitute a sufficiently
accurate description of the motion of the model.

§1. Preliminary remarks and solution of boundary value problems. Formu- /11%
lation of boundary value problems. Let us use the equations of perturbed mo-
tion in one of the planes of symmetry of a solid body with a cavity partially
filled with a viscous liquid, given in [5]:

(0 -+ myi+ 3 A5, =P;

n_-l

"+ J)wp+3“(xo,z S+ s )=MG; Q.1

=1

By, o+ B8, 0%) - A H Ay 4 ﬁo,,{xs =0 (r=12..)

where tBe point G is the metacenter of the body-liquid system.
All of the coeff1C1ents in (1.1) with the exceptlon of B and BO , are

determined in the same manner as in the case of an ideal liquid [6]. The

coefficients Bn and BO s characterizing the effect of the viscosity of the

[} o
liquid, are expressed by the functions ¥, ¥°, ¢n, @j, Qjn (j = 1, 2, 3; n = 1,
2, ...), which are the solutions of the boundary value problems formulated in

[5]. The Reynolds number is determined by the formula R = wrg/j.

These functions will be considered dimensionless relative to the radii of
B o 2 o O
the cylinder ro(cbn, d)n, szjn) and ro(‘y, e, Qj).
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For w we shall introduce the frequency which is characterisfic for each
of the boundary value problems and which can be identified with the n-th fre-

quency of the vibrations of the liquid 0, in the light of the concept in [5].

Let us move now to a cylindrical system of coordinates oxr6 with its
origin in the center of the bottom of the cavity, where x and r are dimension-
0’ 0<x< h/ro =h; 0<r<1. We shall assume

that d)n = Gn (r,x) sin o, and introduce new notations and dimensionless un-

less coordinates relative to T

known functions

V=9, T=g; Q =Ry Q=0 (1.2
Q,=0, 9,=0_ Q, =9

Untr, 55 Vo W@h Gt
¢, =G, (r, x)sinf, Q = [U (r, x) + W, (. x)] cos §; .3) /12

X

Qo = U, (1, ) — W, (r, %) sin6; Q. =V, %) cos. .

The equations which define these functions are independent, and the bound-

ary value problems in [5] become the following:
8,G.=0; (A, —iR)V,=0; (1.4)
(BA—R)U,=0; (A,—iR) W, =0.
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Here-
Am:a—a;,;l 5+£; ’r—"f (m;9,1,2);

L and L' are the lines of intersection of the wetted surface and the undis-

turbed free surface with the plane 6 = /2.

In addition to conditions (1.5) and (1.6), the functions G;, U v, and
Wn (n=20,1, 2, ...) must satisfy the condition of regularity at r = 0.

=]
. n’ n
(n=1, 2, ...). In the case under discussion, the function Gn has the form

[4]

Solution of boundary“valué problems for the fﬁnctioné Un’ Vo W

2

Go () 5) = L (D% (),

(1.7
- where : nt LE )
“ar chgXx | — r
‘Xn (JC) = En sh EHE ’ “'pn ( ) Jl (En)

¢, — rootsof the equation J; (§) = 0.

En are the roots of-the equétion Ji(g) =

We will seek the solution of the boundary value problem in the form

SR
(1. — (N .
Vi W=y Wi, (1.8)

' . 2 .
(1.
Gi=X 0 Um0 V.-
1 j=1

a
i=1 j=1

T

where the functions with the subscripts j = 1 and j = 2 exactly satisfy the

.“Bduhdary conditions at r = 1 and x = 0, respectively.

Selecting the appropriate partial solutions of equations (1.4) for func-
tions with subscripts j = 1 and j = 2, we can express the desired solutions in

the form of several series with indeterminate coefficients. The latter are



determined with ar‘1' accdfééy up to the normalizing factor from the conditions of
solvability of the systems of algebraic equations into which conditions (1.5)
and (1.6) are transformed following the appropriate substitutions and expan-
sions of the right-hand sides of the equations into Fourier series. As a re-

sult, we will have

g
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Here

The coefficients B 0’ introduced in (1 1) depend only on D and Dn’ which

are expressed by the formulas
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R S,
whereax and x' are the expansion coefficients of the functions X, and x
into Fourier series accordlng to the sines and cosines in the segment 0 <
= im
< h; o, and Kk are the univalent roots of the correspondlng functions, p051t1ve /14
in the first qaadrant of the plane 8 s R or g s R .
n
Slncey oo l//.R ‘(14+iat large Reynolds numbers (for suff1c1ent1y

small m), the solen01da1 component of the velocity vector decreases exponen—
,tially from the bottom into the depths of the fluid, as well as with 1ncrea51ng
distance from the walls in the radial direction. Solution (1.8), constltuted
from (1.9), satisfies (1.4)>and'at h >>1//Rn it satisfies the boundary con-
ditions (1.6) as well as (1.5), with the exception of a small area (on the

order of 1//§;] of the corner point of line L.

Solution of boundary value problems for functions UO’ Vs W, and Gg. We
shall seek the solution of the boundary value problem in the form of a sum of
the three partial solutions
. 3 3 o
Go=3, G Up= h> Uy’
_ =t S =t
S (1.11)
V0=2 V(i); Wo= 2 W(l) »

j=1 =1
where the functions with the subscripts j = 1 and j = 2 satisfy precisely the
" boundary conditions for r = 1 and x = 0, respectively.

We will select the functions with subscript j = 3 so that all three solu-

‘tions will satisfy exactly conditions (1.6) in the sum. For a cavity in the

form of an upright circular cylinder, we will have [4]

-

(1.12)
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_ Employlng the functions (1.12) with the aid of the method descrlbed we
: obtain the following solutions for U(J), V(J), W(J), GO(J) (=1, 2, 3)

INCS Iy (o) -
0
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" where the coefficients D0 s DI'{ are expressed iby the formulas
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" Here Knm and Kr'lm are the éxpansion coefficients of the functions Kn(x) and

Kr‘l(x) into Fourier series according to the sines and cosines; they have the
form

. K-‘=-?£Knm K {[(—1) -+ 2] chg, h——[2(—~1) + 10}
am = ' wm = : hshzh(‘g; ﬁm)

For the coefficient Bn’ after transformations and the application of sum-
mation formulas [3], we obtain the following expression, accurate with a pre-
cision up to terms on the order of l/VRn,

6 : '
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82, Determination of the parameters 8, and 50 . Let us introduce into the

discussion the logarithmic decrement of the vibrations of the fluid 5

parameter 60 , related to the coefficients B and B

and the
by the relatlonshlps

5n=f:fn; Bgp = o (2.1)

Here

N n@E—1

~ rew: 28 th g, A ’
o2 = Fnine g Na= [ s
n o st . 3

To determine § and 6 0 let us use the formulas in [5], 11m1t1ng our-

selves to the terms on the order of l/V and considering dimensionless the

coordrnates, the scalar and vector potentlals.

The corresponding expressions in a cylindrical syStem of coordinates can /16
“be written, with consideration of (1.3), in the form

aGn v, ow,\ .
5","7\7?1 [5(6% +797.—‘a;“‘ r )‘Pnsm‘?ds-"

T o ‘
_ 7 J Gy, sin Ods |; (2.2)

2
TU'O

60/1":‘ -
: n

Im S Go, sin Bds.
J .

SuBstituting in (2.2) the corresponding expressions from (1.9), (1.13) as

well as (1.10) and (1.14), after several transformations are summed by the

~



subscript m [3], with an accuracy up to terms on the order of 1//?;, we will

have

5T (z“’+1 2, )

"~ VR, 22—1 sh 2t h/’ ' 3)3

; . omtheth { " (;'E) g |
| 8oy = — e — 224,-1 2 o7 ,.
% o VR, (22—-1) sl she, B shE, hchEh |
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28 ——-—(1+ o 5, :

; g—g E shEhshEh e (2.4)

In the boundary cases, formulas (2.3) and (2. 4) change to the following:
for a deep fluid (h > 1)

L 'Qz §34~1 §
T R &—1 (2.5)

60n'#."" 1 .{_2 .
: [ Zﬂg (gp i } '(_2.6)

for a shallow fluid (h < 1j

n i ". on £h
2.7); 8
(. ) "TTVYR E—1°

T VR

(2.8)

- Figure 1 shows the coefficients Sn = 6n¥§1ﬁand SOn = Gon/ﬁz'as functions
of ‘the level of fullness h, calculated with the aid of (2.3) and (2.4) for the

first four forms of vibration (n =1, 2, 3, 4).

At h - 0, formulas (2.3) and (2.7) lose the physical meaning that is re-
lated to the proximity of the statement of the problem and the method of solu-

tion.

§3. Analysis of the numerical results and comparisoh with experiment.
" We will limit ourselves to a consideration of the case of a deep fluid (h>1);

equations (1.1) will deal only with the first note of the yibration (n = 1). /17



Dropping the subscript 1 in the generalized coordinates, we can write (1.1)
thus: ‘

(n° - m)'u'—l— ll.s‘;: P,

(9 o D s = M é
.. - ) ’ _-... '-.. ' ’ (3.1)
BB 0l - M Ay b+ By = 0.

i

To estimate the effect of the addi—

S tional dissipative terms -on the dynamic
< kf‘ _juw————— characteristics of the system, we per-
8 /////fg- 3 formed calculations of the parameters
@\\// ;;2; 61 and 601 using (2.5) and (2.6). These
6t - — same parameters were estimated independ-
' //\\ i ently on the basis of a comparison of
4 = = ‘the theoretical and experimental fre-
%é;;;,/ﬁ;—' que?cy characteelstlcs of t?e "body-
2 A fluid" system with translational and.
NG, rotational displacements.
) T '24 5e In carrying out the experiments,
‘ o Awe used as a model a cylindrical cavity
Figure 1 with.a diameter of 350 mm, filled with

a mixture of water and glycerine to the
level h = 295 mm, with an axis of suspension passing through the metacenter of
the "body-fluid'" system. Calculations were performed with consideration of

the concrete parameters of the cavity and the suspension elements.

The independent translational and angular displacements of the model are

described by the following systems of equations: e

W gitout =P Thpftol +ayi=0
) L ‘ (3.2)

1‘[) + B\p\p + @i,q’ + aWEC + ai,;c = M;
T+l 4o + a4+ g b= 0.

~Here



jé’ - : M ) 8,0, A

In:m"-{«ms' B, = PRl atu=p1(m°’ -}—m):
| B ok I >
wOA, PR e mt - m)’ o 3)‘
o __:Ep_me"?‘m.. @ = - Bady l ’
weooA S ’\ W p(m+m)’

For symmetry, the designations are changed somewhat in comparison with
(3.1).

In [1] there is an empirical formula for calculating the logarithmic dec~.ll§
rement of the vibrations of the fluid at n = 1. In the case where h > 1, this
fbrmula has the form L o - ;

e 5;==l’8ff,z5. if !
VRI L | . (3.4)

With an accuracy up to a constant factor v2 it agrees with (2.5) (at n = 1)

and with the corresponding formula given in [7].

1

7o . Re1600; §=0,23200 | —
' R=3300 ; 6= 0,13+0,0) ‘
A

15

12 16 20 f He

Figure 2 Figure 3

The experiment showed that for numbers R1 < 104 the relationship (3.4)

gives reduced values of 61 and a correction must be introduced in it.

10



In calculating the amplitude-frequency characteristic curves of the sys-

tems (3.2), the coefficients 8 o Bw, w2, wi and J° were determined experimen;
-

tally, and logarithmic decrement 61 by formula (3.4) with the sultable

corre cti on.

The frequency of the fluid W and the coefficients A and J,

: u

| 1’ Ol, 1
included in expressions (3.3) were calculated according to the formulas for an
ideal fluid [4] and checked by means of individual experiments according to

the method described in [2].

Thus, of all the coefficients in (3.2), it was necessary to verify in the

final stage of the experiments only the value B,., calculated with the aid of

01 ,
(2.1) and (2.6), which was done on the basis of a comparison of the theoretical
and experimental amplitude-frequency characteristic curves in the vicinity of
the natural frequency of the system, where the effect of the coefficient 801

is maximal.

Figufe'Z and Figure 3 show the theoreticel (solid curve) and experimental
(circles) amplitude-frequency curves of the translationai and angular displace-
ments of the model. The theoretical curves were calculated for several values
ef the decrement §,, in order to allow for possible errors in determining the
viscosity of the fluid. It is apparent from the figures that the theoretical
amplitude curves are very close to the experimental ones. This allows us to
_conclude that the systems of:equations (3. 2) are a sufficiently accurate de;
scrlptlon of the motion of the model, and (2.6) gives a result which is close to

‘the actual one, at-.least in the range of R1 numbers under consideration. For /19
an 111ustratlen of the effect of the coefficient 801 on the dynamic curve of
the system in Figure 3 we have used a dashed line to represent the amplitude

characteristic curve calculated on the assumption that 801 = 0,

We can show that the value of the correction to the dynamic coefficient of
‘amplification of the model at the natural frequency of the model, introduced by

additional terms in (3.2), dependent on B is determined by the value of the

01’
coefficient R )
‘ — Zodohey - o _(3.9)
VU () B

‘which is comparable with unity.

11



According to (2.4), (2.6) and (2.8), the parameter 601 has the property

“of fixed sign. Therefore the sign of coefficient A, can be either positive

1

or negative depending on the sign of A In accordance with this, the cor-

rection of the dynamic coefficient of géplification of the open system will be
positivé or negative, and the solid curve in Figure 3 will run above or bélow
tﬁe dashea'one. Thus, the disregard of the terms dependent on parameter 801 |
..in the equations of excited motion (3.1) in certain cases may not lead to a

""margin'' of stability.

12
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